Marine Life Protection Act Initiative

Draft Spatial Bioeconomic Model Evaluations of Round 2 MPA Proposals

Presentation to the MLPA Master Plan Science Advisory Team
June 18, 2009 • Los Angeles, CA

Dr. Christopher Costello • MLPA Master Plan Science Advisory Team

Model Inputs

- Geographic
 - Habitat maps
 - Proposed marine protected area (MPA) boundaries and regulations
- Species-specific
 - Life history (growth, natural mortality, fecundity)
 - Adult movement (home range diameter)
 - Larval dispersal (pelagic larval duration, spawning season, some behavior)
 - Dispersal patterns from University of California Los Angeles (UCLA) / University of California, Santa Barbara (UCSB) circulation model
 - Egg-recruit or settler-recruit relationship (critical to population persistence)

Updates to Model Inputs

- Substrate map
 - Uses combination of high- and low-resolution habitat data, and kelp data to reflect the best available indication of hard habitat in each location
- Fishing fleet model
 - Original model: Fleet responds to spatial abundance of fish
 - Updated model: Based on data compiled by Ecotrust
 - Updated model: Fleet responds to
 - 1. spatial abundance of fish
 - 2. distance from port
 - 3. higher effort further south in study region (University of California, Davis UCD model only)

Model Inputs: Species

- Ocean Whitefish
- Black Surfperch
- Opaleye
- Kelp Bass
- Kelp Rockfish
- California Sheephead
- California Halibut
- Red Sea Urchin

Model Outputs

Conservation

- Spatial distribution of larval settlement and biomass
- Total settlement and biomass (summed over study region, weighted sum across species)

Economic

- Spatial distribution of fishery yield
- Total fishery yield (summed over study region, weighted sum across species)

Model Outputs

Other Data

- Spatial distribution of fishing effort
- Larval connectivity patterns
- All outputs are based on long-term equilibria
- Each output is calculated for a range of assumptions about future fishery management outside MPAs¹

¹For complete list of assumptions, see evaluation methods document for the MLPA South Coast Study Region, Chapter 8, Appendix B.

Model Results

Spatial Distribution of Biomass

(Maps also available for recruitment, fishery yield and fishing effort)

- Example species: Halibut
- Example proposal: Lapis 2
- Management assumption*: Conservative management outside MPAs

*Also run for "unsuccessful management" and "Maximum Sustainable Yield" (MSY-type) management

Ranking for conservation value (nearly) preserved across fishing scenarios and models

New Fleet Model - UCSB

 Rankings are similar across management scenarios, models and choice of fleet model.

MSY-Type Management

Conservative Management

- Rankings for economic value preserved across models and for "MSY-Type" and "conservative management"
- Rankings are reversed under "unsuccessful management."

New Fleet Model - UCD

MSY-Type Management

Conservative Management

 Rankings are similar across management scenarios, except with unsuccessful management

New Fleet Model - UCSB

 Rankings are similar across management scenarios, even with "unsuccessful management"

0.59

0.6

Conservation Value

0.61

0.62

0.73

0.74

Conservation Value

0.75

0.76

Scenario: Conservative Management

Conservation Value

P0

OP

XA

XB

Model Results: Proposal Rankings

Scenario: Unsuccessful Management

Results: Changes in Settlement

- Maps show percent increase in connectivity, relative to Proposal 0
- Settlement typically increases everywhere with the addition of MPAs
- Lower values could be improved by adding MPA area to source locations
- Maps are available for each species, MPA proposal and level of fishing.

Conclusions

- All model outputs from Round 2 evaluations at MLPA website (www.dfg.ca.gov/mlpa)
- Ranking of MPA proposals for conservation value is relatively insensitive to (1) model, (2) assumption about fishery management and (3) choice of fleet model
- Lapis 1 or Topaz give the highest expected conservation value under all scenarios for both models
- Rankings for economic value depend on (1) management scenario (reversed for unsuccessful management) and (2) fleet model
- External A and Lapis 2 give the highest expected economic value for "MSY-type management" and "conservative management"
- Under "unsuccessful management," Lapis 1, Topaz and External
 B all gave high expected economic values, except in UCSB's fleet
 model, where economic values were similar, with Lapis 1 and
 External A performing best

Round 2 results in the context of round 1

MSY-Type Management

Conservative Management

 UCSB results with old fleet model